Role of PET/CT in the clinical management of locally advanced pancreatic cancer

Maria Picchio^{1,2}, Elisabetta Giovannini¹, Paolo Passoni³, Elena Busnardo¹, Claudio Landoni^{1,4}, Giampiero Giovacchini^{4,5}, Valentino Bettinardi^{1,2}, Cinzia Crivellaro⁴, Luigi Gianolli¹, Nadia Di Muzio³, and Cristina Messa^{2,4,6}

¹Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy; ²Institute for Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Milan, Italy; ³Radiation Oncology, San Raffaele Scientific Institute, Milan, Italy; ⁴Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; ⁵Nuclear Medicine Department, Stadtspital Triemli, Zurich, Switzerland; ⁶Nuclear Medicine, San Gerardo Hospital, Monza, Italy

ABSTRACT

Aim. To evaluate the role of 18F-fluorodeoxyglucose (FDG) PET/CT in: a) the selection of patients with locally advanced pancreatic cancer for helical tomotherapy with concurrent chemotherapy (HTT-ChT); b) monitoring HTT-ChT treatment efficacy in comparison with contrast-enhanced CT (c.e.CT).

Methods. Forty-two consecutive patients with unresectable locally advanced pancreatic cancer referred for HTT-ChT were enrolled in the study. All patients were pretreated with induction ChT. Before the beginning of HTT-ChT treatment patients underwent diagnostic c.e.CT (CT₀) and FDG PET/CT (PET/CT₀) for staging. After staging, patients received HTT-ChT. Three months after the end of HTT-ChT a control c.e.CT (CT₁) was done. FDG PET/CT (PET/CT₁) was repeated only in patients with positive PET/CT₀. PET/CT₁ and CT₁ were compared with baseline imaging results to assess treatment efficacy.

Results. In 31/42 cases (74%) PET/CT₀ documented pathological uptake in pancreatic lesions, while in the remaining 11/42 cases it showed no uptake. In 7/42 (17%) patients, PET/CT₀ also detected distant metastases, prompting a change in the therapeutic approach. Compared to PET/CT₀, PET/CT₁ (n = 18) documented 3 complete metabolic responses, 9 partial metabolic responses, 2 instances of stable metabolic disease, and 4 instances of progressive metabolic disease. In the same group of 18 patients, CT₁ showed 0 complete responses, 3 partial responses, 8 instances of stable disease, and 7 instances of progressive disease compared to CT₀. Concordance between PET/CT and CT response was seen in 33% of cases. In 50% of cases, PET/CT₁ documented a response to therapy that was not evident on CT.

Conclusions. PET/CT influenced the treatment strategy by detecting distant metastases not documented by CT, thus accurately selecting patients for HTT-ChT after induction ChT. In monitoring treatment efficacy, PET/CT can detect a metabolic response to treatment not identified by CT.

Key words: pancreatic cancer, FDG PET/CT, helical tomotherapy, patient management.

The authors have no potential conflict of interest.

Correspondence to: Maria Picchio, MD, Nuclear Medicine Department, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy. Tel +39-02-26436117; fax +39-02-26415202; email picchio.maria@hsr.it

Received December 1, 2011; accepted February 24, 2012.